Produkt zum Begriff DSQU:
-
Zeigermann, Oliver: Machine Learning - kurz & gut
Machine Learning - kurz & gut , Der kompakte Schnelleinstieg in Machine Learning und Deep Learning Die 3. Auflage des Bestsellers wurde ergänzt durch Kapitel zu Large Language Models wie ChatGPT und zu MLOps Anhand konkreter Datensätze lernen Sie einen typischen Workflow kennen: vom Datenimport über Datenbereinigung, Datenanalyse bis hin zur Datenvisualisierung Nicht nur für zukünftige Data Scientists und ML-Profis geeignet, sondern durch seine durchdachte Didaktik auch für Interessierte, die nur am Rande mit ML zu tun haben, wie z.B. Softwareentwickler*innen Machine Learning beeinflusst heute beinahe alle Bereiche der Technik und der Gesellschaft. Dieses Buch bietet Interessierten, die einen technischen Hintergrund haben, die schnellstmögliche Einführung in das umfangreiche Themengebiet des maschinellen Lernens und der statistischen Datenanalyse. Dabei werden alle wesentlichen Themen abgedeckt und mit praktischen Beispielen in Python illustriert. Verwendet werden dabei die Bibliotheken Scikit-Learn, Pandas, NumPy, TensorFlow und Keras. Nach der Lektüre dieses Buchs haben Sie einen Überblick über das gesamte Thema und können Ansätze einordnen und bewerten. Das Buch vermittelt Ihnen eine solide Grundlage, um Ihre ersten eigenen Machine-Learning-Modelle zu trainieren und vertiefende Literatur zu verstehen. Die aktualisierte 3. Auflage behandelt jetzt auch Large Language Models wie z.B. ChatGPT und MLOps. , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen
Preis: 19.90 € | Versand*: 0 € -
Raschka, Sebastian: Machine Learning Q and AI
Machine Learning Q and AI , "An advanced exploration of machine learning and AI, with each chapter asking and answering a question from the field. Divided into five sections: deep learning and neural networks; computer vision; natural language processing; production and deployment; and predictive performance and model evaluation"-- , >
Preis: 37.30 € | Versand*: 0 € -
Learning Resources® Big Feelings PineappleTM
Produktdetails: Alter: ab 3 Jahren Auf spielerische Art und Weise lernen die Kinder, Gefühle und Ausdrücke bei sich selbst und anderen zu erkennenHilft Kindern, Emotionen und Ausdrücke zu erforschen und zu lernen, indem sie den Mund, die Augen, die Augenbrauen und die Hände dieses tropischen Freundes verändern Material & Maße: Maßw aufgebaut (Länge x Breite x Höhe): 16 x 10 x 8 cmMaterial: ABS, PVCIm Lieferumfang enthalten:1 x Learning Resources® Big Feelings PineappleTMWarn- & Sicherheitshinweise:Achtung: Nicht für Kinder unter drei Jahren geeignet. Enthält verschluckbare Kleinteile. Erstickungsgefahr!Warn- & Sicherheitshinweise:Achtung: Nicht für Kinder unter drei Jahren geeignet. Enthält verschluckbare Kleinteile. Erstickungsgefahr!
Preis: 7.77 € | Versand*: 4.95 € -
APC StruxureWare Data Center Expert Virtual Machine
StruxureWare Data Center Expert Virtual Machine - Activation License
Preis: 2509.09 € | Versand*: 0.00 €
-
Verdient man Geld beim Praktikum in den Bereichen Data Science oder Machine Learning?
Es hängt von verschiedenen Faktoren ab, ob man Geld während eines Praktikums in den Bereichen Data Science oder Machine Learning verdient. In einigen Fällen bieten Unternehmen Praktikumsstellen mit einer Vergütung an, insbesondere wenn es sich um größere Unternehmen handelt. In anderen Fällen kann es sein, dass Praktika unbezahlt sind oder nur eine geringe Aufwandsentschädigung bieten. Es ist wichtig, die individuellen Bedingungen des Praktikums zu prüfen, um herauszufinden, ob eine Vergütung angeboten wird.
-
Wie wichtig ist das Fach Theoretische Informatik für Data Science und Machine Learning?
Das Fach Theoretische Informatik ist für Data Science und Machine Learning nicht unbedingt unverzichtbar, aber es kann dennoch von Vorteil sein. Theoretische Informatik vermittelt grundlegende Konzepte und Algorithmen, die in vielen Bereichen der Informatik relevant sind, einschließlich Data Science und Machine Learning. Ein solides Verständnis der theoretischen Grundlagen kann helfen, komplexe Probleme besser zu verstehen und effiziente Lösungen zu entwickeln.
-
Was sind die potenziellen Anwendungen von Zufallsalgorithmen in der Datenanalyse und Machine Learning?
Zufallsalgorithmen können verwendet werden, um Daten zu generieren, zu transformieren oder zu erweitern, was die Trainingsdaten für Machine Learning verbessern kann. Sie können auch zur Erzeugung von Unsicherheitsschätzungen in Vorhersagemodellen verwendet werden. Darüber hinaus können Zufallsalgorithmen in der Optimierung von Modellparametern eingesetzt werden, um bessere Ergebnisse zu erzielen.
-
Was sind die grundlegenden Konzepte und Anwendungen von Regression in Statistik und Machine Learning?
Regression in Statistik und Machine Learning befasst sich mit der Vorhersage von kontinuierlichen Werten basierend auf anderen Variablen. Die grundlegenden Konzepte umfassen die Bestimmung einer mathematischen Beziehung zwischen den Variablen, die Schätzung von Parametern und die Bewertung der Modellgenauigkeit. Anwendungen von Regression sind vielfältig, wie z.B. die Vorhersage von Aktienkursen, Wetterprognosen oder medizinische Diagnosen.
Ähnliche Suchbegriffe für DSQU:
-
Learning Resources® MathLink Steckwürfel - Big Builder
Baue Tiere, Fahrzeuge und mehr mit den MathLink-Würfeln!Folge dem Aktivitätsleitfaden oder erstelle deine eigenen Kreationen. Die bunten Würfel verbinden sich auf allen Seiten und funktionieren mit allen MathLink Cubes-Produkten. Das Set enthält 200 MathLink-Würfel in 10 Farben und einen Aktivitätsleitfaden mit 20 Bauherausforderungen.Produktdetails:Maße (Länge x Breite x Höhe): 46,7 x 31,8 x 27,4 cmMaße einzelner Würfel (Länge x Breite x Höhe): 2 x 2 x 2 cmInhalt: 200 MathLink-Würfel in 10 Farben, Aktivitätsleitfaden mit 20 BauanleitungenFördert die Kreativität und regt zum Entdecken anAlter: Ab 5 JahrenAchtung!Erstickungsgefahr aufgrund verschluckbarer Kleinteile.
Preis: 31.27 € | Versand*: 4.95 € -
Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow (Géron, Aurélien)
Praxiseinstieg Machine Learning mit Scikit-Learn, Keras und TensorFlow , Aktualisierte und erweiterte 3. Auflage des Bestsellers zu TensorFlow und Deep Learning Behandelt jetzt viele neue Features von Scikit-Learn sowie die Keras-Tuner-Bibliothek und die NLP-Bibliothek Transformers von Hugging Face Führt Sie methodisch geschickt in die Basics des Machine Learning mit Scikit-Learn ein und vermittelt darauf aufbauend Deep-Learning-Techniken mit Keras und TensorFlow Mit zahlreiche Übungen und Lösungen Maschinelles Lernen und insbesondere Deep Learning haben in den letzten Jahren eindrucksvolle Durchbrüche erlebt. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses Standardwerk verwendet konkrete Beispiele, ein Minimum an Theorie und unmittelbar einsetzbare Python-Frameworks (Scikit-Learn, Keras und TensorFlow), um Ihnen ein intuitives Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme zu vermitteln. In dieser aktualisierten 3. Auflage behandelt Aurélien Géron eine große Bandbreite von Techniken: von der einfachen linearen Regression bis hin zu Deep Neural Networks. Zahlreiche Codebeispiele und Übungen helfen Ihnen, das Gelernte praktisch umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten. Lernen Sie die Grundlagen des Machine Learning anhand eines umfangreichen Beispielprojekts mit Scikit-Learn Erkunden Sie zahlreiche Modelle, einschließlich Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden Nutzen Sie unüberwachtes Lernen wie Dimensionsreduktion, Clustering und Anomalieerkennung Erstellen Sie neuronale Netzarchitekturen wie Convolutional Neural Networks, Recurrent Neural Networks, Generative Adversarial Networks, Autoencoder, Diffusionsmodelle und Transformer Verwenden Sie TensorFlow und Keras zum Erstellen und Trainieren neuronaler Netze für Computer Vision, Natural Language Processing, Deep Reinforcement Learning und generative Modelle , Studium & Erwachsenenbildung > Fachbücher, Lernen & Nachschlagen , Auflage: 3. Auflage, aktualisiert und erweitert, Erscheinungsjahr: 202309, Produktform: Kartoniert, Titel der Reihe: Animals##, Autoren: Géron, Aurélien, Übersetzung: Rother, Kristian~Demmig, Thomas, Auflage: 23003, Auflage/Ausgabe: 3. Auflage, aktualisiert und erweitert, Seitenzahl/Blattzahl: 876, Abbildungen: komplett in Farbe, Keyword: AI; Algorithmen; Artificial Intelligence; Data Science; Deep Learning; Geron; KI; Künstliche Intelligenz; Machine Learning; Maschinelles Lernen; Neuronale Netze; NumPy; Python; Statistische Datenanalyse; TensorFlow; matplotlib; scikit-learn, Fachschema: Data Mining (EDV)~Programmiersprachen, Fachkategorie: Programmier- und Skriptsprachen, allgemein, Warengruppe: HC/Programmiersprachen, Fachkategorie: Data Mining, Thema: Verstehen, Text Sprache: ger, Originalsprache: eng, UNSPSC: 49019900, Warenverzeichnis für die Außenhandelsstatistik: 49019900, Verlag: Dpunkt.Verlag GmbH, Verlag: Dpunkt.Verlag GmbH, Verlag: O'Reilly, Länge: 239, Breite: 163, Höhe: 44, Gewicht: 1408, Produktform: Klappenbroschur, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Genre: Mathematik/Naturwissenschaften/Technik/Medizin, Vorgänger: 2406797, Vorgänger EAN: 9783960091240 9783960090618, andere Sprache: 9781098125974, Herkunftsland: DEUTSCHLAND (DE), Katalog: deutschsprachige Titel, Katalog: Gesamtkatalog, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0070, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 54.90 € | Versand*: 0 € -
ASUS Tinker Edge R Einplatinencomputer (Mainboard für KI-Anwendungen, Machine-Learning)
ASUS Tinker Edge R Einplatinencomputer (Mainboard für KI-Anwendungen, Machine-Learning)
Preis: 195.76 € | Versand*: 4.99 € -
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Géron, Aurélien)
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow , This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. , > , Auflage: 3rd Edition, Erscheinungsjahr: 202211, Produktform: Kartoniert, Autoren: Géron, Aurélien, Auflage: 23003, Auflage/Ausgabe: 3rd Edition, Themenüberschrift: COMPUTERS / Computer Vision & Pattern Recognition~COMPUTERS / Natural Language Processing~COMPUTERS / Neural Networks, Fachschema: Database~Datenbank~Fuzzy Logik - Fuzzy Set~Intelligenz / Künstliche Intelligenz~KI~Künstliche Intelligenz - AI~Lernen~Mustererkennung~Neuronales Netz - Neuronaler Computer - Neurocomputer~Übersetzung, Fachkategorie: Neuronale Netze und Fuzzysysteme~Mustererkennung~Maschinelles Sehen, Bildverstehen, Text Sprache: eng, Verlag: O'Reilly Media, Verlag: O'Reilly Media, Länge: 233, Breite: 186, Höhe: 52, Gewicht: 1511, Produktform: Kartoniert, Genre: Importe, Genre: Importe, Vorgänger: 2654375, Vorgänger EAN: 9781492032649 9781491962299, Katalog: LIB_ENBOOK, Katalog: Gesamtkatalog, Katalog: Internationale Lagertitel, Katalog: internationale Titel, Katalog: Kennzeichnung von Titeln mit einer Relevanz > 30, Katalog: Lagerartikel, Book on Demand, ausgew. Medienartikel, Relevanz: 0080, Tendenz: -1, Unterkatalog: AK, Unterkatalog: Bücher, Unterkatalog: Hardcover, Unterkatalog: Lagerartikel,
Preis: 72.36 € | Versand*: 0 €
-
Was sind die grundlegenden Konzepte und Anwendungen der Regression in Statistik und Machine Learning?
Die Regression ist eine statistische Methode, um die Beziehung zwischen einer abhängigen und einer oder mehreren unabhängigen Variablen zu modellieren. Sie wird verwendet, um Vorhersagen über zukünftige Werte der abhängigen Variablen zu treffen. In Machine Learning wird Regression häufig verwendet, um kontinuierliche Werte vorherzusagen, wie z.B. Verkaufsprognosen oder Immobilienpreise.
-
Warum Deep Learning im Vergleich zu Machine Learning?
Deep Learning unterscheidet sich von Machine Learning durch seine Fähigkeit, automatisch Merkmale aus den Daten zu extrahieren, anstatt dass diese manuell definiert werden müssen. Dadurch ist Deep Learning in der Lage, komplexere und abstraktere Muster in den Daten zu erkennen und zu lernen. Dies ermöglicht es Deep Learning-Modellen, in vielen Anwendungsbereichen, wie Bild- und Spracherkennung, bessere Leistungen zu erzielen als herkömmliche Machine Learning-Modelle.
-
Was ist Python Machine Learning?
Python Machine Learning bezieht sich auf die Verwendung von Python-Programmierung, um maschinelles Lernen zu implementieren. Dabei werden Algorithmen und Modelle erstellt, die es Computern ermöglichen, aus Daten zu lernen und Vorhersagen zu treffen. Python bietet eine Vielzahl von Bibliotheken wie Scikit-learn, TensorFlow und Keras, die das Entwickeln von Machine-Learning-Anwendungen erleichtern. Mit Python Machine Learning können komplexe Probleme gelöst und Muster in großen Datenmengen entdeckt werden.
-
Wie funktioniert Big Data?
Wie funktioniert Big Data?
* Alle Preise verstehen sich inklusive der gesetzlichen Mehrwertsteuer und ggf. zuzüglich Versandkosten. Die Angebotsinformationen basieren auf den Angaben des jeweiligen Shops und werden über automatisierte Prozesse aktualisiert. Eine Aktualisierung in Echtzeit findet nicht statt, so dass es im Einzelfall zu Abweichungen kommen kann.